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Lessons based on 3M+3M live application
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LIVE A/B TESTING METHODOLOGY & RESULTS
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IMPACT OF APPLYING A DL PRICING SYSTEM

From a quant perspective
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DATA SPARSITY

High Granularity
High Resolution

Sparse booking data € D
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ML MODEL & DATA SPARSITY
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D is multitype - - - - —— - - - - :

SpatioTemporal Data € D Accurate demand curves € B

‘ /R‘L

Pice demand

‘ \\\\K\

| DE tlv¢
., Pricing landsc:

400
S a

:' 0
S |

PAX

= £
T 300 &
‘ a
;‘.- o
= L
‘\ \ 200 S o
«‘/ 100
50 :
o 'L/K: : " = £ Y
0 : price

®
Catchment OD

Target OD




LESSONS FROM LIVE APPLICATION OF DEEP LEARNING CONTINUOUS PRICING SYSTEM IN AN AIRLINE

Need to make sure ML learned the right logic.

XAl used both for R&D and for End User.
XAl libs are less optimization oriented.

In house shap built for optimization.
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Pricing granularity
Level of segmentation of

products and passengers

Granularity dependent revenue supremum

Revenue uplift

Current granularity.
Dicated by ailine

Level of pricing granularity
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RASKS ARE CORRELATED RR
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1. Trading methodologies are applicable.
2. Results that are statistically significant

3. Models' capability to work with data that is: Sparse, Multitype,

Spatio-Temporal, Volatile & NonStationary.

4. High potential in giving the Al granular, high resolution price control.

5. XAl utilization both for dev and for user acceptance.
6. Gradual deployment is essential.
7. A/Btestingis possible.

8. Applicable to other areas: NW planning, ancillaries management,

loyalty programs...
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